
Journal o[ Engineering Physics and Thermophysics, VoL 68, No. 6, 199J 

M O D E L I N G  O F  U N S T E A D Y  
M O V I N G  M E D I A  

N. N. Grinehik, P. V. Akulich, 
P. S. Kuts, V. A. Tsurko, and 
V. A. Shkel' 

W A V E  P R O C E S S E S  I N  

UDC 534.2:519.6 

Using the nonreciprocity relation a difference scheme is built for the wave equation in a moving medium. 
Examples are given of solution of the problems of sound propagation in the presence of wind. 

In problems of acoustics, electrodynamics, and heat conduction involving intense heat release momentum 

transfer is accompanied, as a rule, by medium motion, and, therefore, the corresponding hyperbolic equations must 

be solved in a moving medium. 

The processes under consideration are described by a wave equation of the form 

P ( P ' x '  t) O2P--ot 2 - OxO ( k ( P ' x '  t) OP)-ox ' (1) 

where medium motion must be taken into account. The modified linear wave equation, when p = I /C  2, k = 1, in a 

moving medium has been considered, with some limitations, by D. I. Blokhintsev [1, 2]. In [3-5], equations are 

derived that have a wider field of application but, unfortunately, are rather complicated for calculations. 

The present work is devoted to modeling of sound propagation in a moving inhomogeneous medium by 

constructing a difference scheme that accounts for the medium motion. 

It is known [2 ] that downstream and upstream disturbances are propagated at different velocities. This 

effect will be accounted for when constructing a difference scheme for wave Eq. (1) with the aid of deformation of 

a difference cell. 

We shall consider the interrelationship of space and time measurements in a moving medium. Let us 

introduce a uniform network in the medium at rest who.t = cohoxwt, where Who = {xi = iho, i = 0, 1, 2 . . . . .  Nx, 
hoN x = 1}, co, = {tj = jr, ./= 0, I, 2 . . . . .  N,, tart = 7'} (Fig. la). In the case of medium motion, each node replaces 

a relatively motionless observer with velocity Vi, and, therefore, for the time of signal propagation, within which 

the observer is continuously recording the amplitude and frequency of pressure or flow-velocity variation, the node 

is displaced by same additional distance (Fig. lb). For the motionless observer at node i sending or receiving a 

signal (a change in pressure or velocity), downstream and upstream paths of signal transmission for a cell with 

length ho (ho is the cell length in the Lagrange reference system) will be different. 

We now consider two cases: a) signal propagation to the right of node i and b) signal propagation to the 

left of node i. Assume that the flow velocity within the limits of the difference cell as well as the wave velocity are 

constant quantities. The dependence of the medium velocity V and the sound velocity C on the coordinate and time 

will be taken into account in the difference scheme. 
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Fig. 1. Deformation of a difference cell: a) medium at rest; b) moving medium. 

1. Let a motionless observer be at the node i. Then  a signal sent downstream has total velocity C + V, and 

for the time of signal propagation At from node i to node i + I, node i + 1 itself is displaced by an additional 

distance VAt; therefore (Fig. 16) 

where 

h + = h o + VAt ,  

A t = h + / ( C + I O ,  h + = h O+ Vh + / ( C + 10. 

2. A motionless observer  is at the node i. Then  a signal sent upstream has total velocity C - V, and for 

the time of signal propagation At from node i to node i - 1, the latter approaches the former by distance At; 

therefore (Fig. lb) 

where 

h -  = ho - V A t ,  

A t = h - / ( C -  I O ,  h -  =?t o -  V h - / ( C -  10. 

Whence 

h + = h o  1 + ~ ,  h - = h o  1 -  , (2) 

where h + and h - t  are the cell dimensions in the Euler reference system. Consequently,  for a motionless observer  

at- node i in the Euler  reference system the initially uniform network undergoes deformation. 

For  the difference scheme, we apply relations (2), which lead, in fact, to deformations of the Euler  

calculation region due to medium motion. 

The  size of the cell (body) must be independent  of the sign of the velocity; therefore, in constructing a 

difference scheme we shall use the condition of independence of cell size of the direction and the velocity sign of 

the moving medium. This means that a signal sent by an observer at time . / -  I downstream (or upstream) must 

be received at moment j + 1 at the same node i when the signal direction is reversed, i.e., the measurements  become 

time-averaged. In other  words, the procedure of time averaging of measurements reflects the fact that one and the 

same node is an emitter and a receiver of waves at the same moment in time. 

The  constructing the difference scheme, we assume that wave Eq. (1) holds for a medium at rest and for 

a moving medium in a local comoving Lagrange reference system for a given individual difference ceil with a 

sufficiently small step ho. Having solved (2) for ho, we pass to Euler variables and select a space step equal, for 

convenience, to h = I / N  x and obtain 

h o = h / ( l  _+ V / C ) ,  

ho = ~ -d + = h / ( l  - v Z / c Z ) ,  (3) 

813 



w h e r e a = l  + V / C ,  y -  I - V / C .  

We write the initial wave equation not for a segment but for difference spatial nodes of the network 

p ( P ,  x ,  t) o2P O ( k ( p ,  x t )OP 
Ot 2 Ox Ox X=X, 

, t:_! < - t < - t j + l ,  (4) 

where x. are the deformed nodes built in accordance with relations (3). 

The boundary and initial conditions are as follows 

P(O,  t) = P l  (t),  P ( I ,  t) = P 2 ( t ) ,  

oP ( x ,  to) _ p ,  (x) , 0 < x <_ l .  
P ( x ,  to) = Po ( x ) ,  at 

We designate an approximate value of the function P at the nodes to~,~ by Yid. Equation (4) will be 

approximated by the scheme with allowance for nonreciprocity relation (2) and independence of the mesh width 

from the direction of medium motion (time-averaging of measurements): 

Yid+ 1 -- 2Yi, l + Yi,j- 1 (a~)i,] ( Yi+ I ,]+ 1 -- Yi,/+ 1 
P (rid I X i ,  t j )  ~2 - -  - - ~  [ a i + l , j + l  h - 

Y i , / + l  - -  Y i - l , / + l  Y i + l d - 1  - Yi,y-1 
- bid+ 1 h + bi+ 1 , j -  1 h 

-- ai d -  1 
Yi, j -  1 yi 1, i -  1 (s) | i = 2 N x - I j = 1 

/ 

where 

ai,jk (Yi,j' Xi' f]) + <Xi-I,: (Yi-l,j' Xi-l ' t]) . 
aid = 2 ' 

) ' i , :  (Yi,]' Xi ' 9 + Y i - l ' f  1r (Yi,]' X i '  
bid = 2 

The conditions at the boundaries are 

Yld+l = PI (tj) ) YNxd+i = P2 (II) ' j= I, N t- I. 
(6) 

The initial conditions are 

Y~,0 = ?0  (x~), i = 0 ,  N x ,  

Yi, l = PO (xi) + rP* (xi) '  i = I , N x - I. (7) 

Difference scheme (5) is implemented in the following iteration process 

"+ ( (yi'S,i xi tj) Yid+l - 2Yi,y + Yid-I (aY)i,/ s 
P ' ' 2 --  a i +  1 , ]+ 1 

r 2h 

s+l  s+l  
Yi+ I,/+ 1 - -  Yi,/+ I 

h 

s+l  s+l  
s Yi,/+l -- Yi-I , /+I  Yi+l , / - I  -- Yi,/-I 

-- bid+l + bi+l,]_ 1 - a id_ 1 
h h 

Yi,/- t -hYi-  i ' i-  I ) (8) 
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Fig. 2. Amplitude of the acoustic pressure vs time: w = 800 sec -1,  a) x = 0.33: 

1) V= 0; 2) 10 m/see;  b) x = 0.66: 1) V= 0; 2) 10 m/see;  3) 20 (dashed line, 

the  ca lcu la ted  ampl i tude  value; solid l ine,  the t ime-averaged  abso lu te  

amplitude value). IP . I ,  Pa; t, sec. 

where, for instance: 

s + l  s + l  
Yld+l = P1 ( t /+ l ) ,  YUx4+l = P 2 ( t j + l ) ,  s = 0 ,  I ,  2 ,  . . . ,  

S ~i'J k $ s (Yi, j '  Xi '  tj) + a i_ l , jk (Yi-  1,1' X i - l ,  tj) 
aid = 2 ' 

s Vi,]k (yiS4, x i ,  t]) + / i _ l , . y k  (y~,j, x i , l]) 
bi,] = 2 

Iteration is ca rded  out until the following condition is fulfilled 

s + l  s s 
[Yi,j+l -- Yi,j+l [ < el [Yi,j+l l + e2 ,  S = O,  1 , 2 . . . .  

T he  values of each successive approximation are found by the elimination technique. It is easy to verify that the 

elimination algorithm is stable for any h and r. 

Examples of Numerical  Solution of the Wave Equation in Moving Media. A flat infinite membrane  vibrating 

in a gas causes periodic gas compression and rarefaction around it and thus is a source of acoustic waves. Consider  

the case when a membrane  performs harmonic oscillations of the type A sin (wt) and the pressure at distance l is 

equal to zero. For instance, such a problem can be observed when acoustic waves propagate along a narrow long 

tube of constant cross-section whose width is small as compared with wavelength. Under  these conditions we can 

assume that all quantities (velocity, density,  pressure, etc.) are constant in each tube cross section and the direction 

of wave propagation coincides with that of the tube axis. The  pressure difference between the gas at the tube end 

and the surrounding space is small as compared with the pressure difference inside the tube. Therefore  with a 

sufficient degree of accuracy, we assume equality of the gas pressure to zero as a boundary  condition [7 ]. 

In the presence of wind V(x, t) along the axis x, the pressure satisfies wave Eq. (4) with boundary 

conditions 

and initial conditions 

P ( 0 ,  t) = A s i n ( w t ) ,  P ( I ,  t) = 0 ,  

P(x o) 0 o/'(x, OI , = = 0 ,  0 _ < x _ < l .  
' O t  [ t=O 

The initial conditions correspond to a medium at the rest at the initial moment of time. For the example under  

consideration, Eq. (I) acquires a linear form with the coefficients p = I / C  2, k = 1. In this case, a solution is sought 
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Fig. 3. Acoustic pressure vs time at V = 0, x = 0.66, ra = 800 sec - l .  P, Pa. 
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Fig. 4. Acoustic pressure vs the coordinate: 1) V = 10 m/sec;  2) 20 m/sec  at 

t = 0.4002 sec, co = 800 s ec - l ;  3) V = 0, and 4) V-- - 3 x  + 5 at t = 0. 3 sec, 

oJ = 900 sec-1; curves 3, 4) the absolute amplitude value. 

directly from approximation relations of type (8) at s = 0. Calculations were carried out for different  space and 

time steps. 

Figure 2 shows the t ime-dependent  amplitudes of the acoustic pressure at different gas velocities. As seen, 

with an increase in gas velocity, the build-up of pressure amplitude decreases. In this case, the most pronounced 

decrease in the amplitude and,  consequently, in the intensity of acoustic radiation is observed at points far from 

the membrane  (Fig. 2b). Figure 3 shows pressure versus time at the point x = 0.66 at V = 0. In the pressure of 

velocity, the dependence  preserves its character.  In the calculations, we adopted the following values of the 

parameters:  A = 0.5 Pa, l = 20 m, C = 320 m/sec ,  where C is the sound velocity. 

The  dependence of acoustic pressure on the coordinate is shown in Fig. 4, which is also indicative of a 

decrease in the amplitude and,  consequently, in the intensity of radiation of acoustic waves with an increase of gas 

velocity, since the medium under  consideration does not dissipate and energy dissipation proceeds only due to gas 

motion. Curves 3 and 4 are obtained for the case when the gas velocity depends linearily on the coordinate and is 

directed along the axis x. According to [2 ], sound audibility decreases in the presence of wind. Naturally,  in a real 

atmosphere this effect can be associated with atmosphere turbulence, but it has been also observed in the presence 

of weak wind ( 1 - 2  m/sec) .  

We consider one more problem, i.e., the occurrence of sound vibrations in a resonator.  The  simplest 

examples of such resonators are tubes open on one or both ends, Helmholtz resonators (in the form of bottles), 

etc. It is easy to make all resonators of such kind "sound" in an air flow by blowing over their mouth. An open end 

is identical to an absolutely soft cover when the pressure (acoustic not atmospheric) is practically equal to zero. At 

the left-hand boundary of the resonator x = 0 we have the condition P(0, 73 = 0; at lhe r ight-hand boundary  

oe(x, t) l = 0 .  
Ox [ x= 1 
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Let the tube have intrinsic noise with a set of harmonics. Then in the presence of wind whose velocity is directed 
along the resonator axis the phenomenon of resonance accompanied by a strong build-up of wave amplitude and 

sound enhancement has been observed. 
The results of calculations for sound attenuation in the presence of wind and sound enhancement in a 

resonator tube, with air flowing in it, correspond to experimental data [2 ]. 
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